Evf, a virulence factor produced by the Drosophila pathogen Erwinia carotovora, is an S-palmitoylated protein with a new fold that binds to lipid vesicles.

نویسندگان

  • Sophie Quevillon-Cheruel
  • Nicolas Leulliot
  • Carlos Acosta Muniz
  • Michel Vincent
  • Jacques Gallay
  • Manuela Argentini
  • David Cornu
  • Frédéric Boccard
  • Bruno Lemaître
  • Herman van Tilbeurgh
چکیده

Erwinia carotovora are phytopathogenic Gram-negative bacteria of agronomic interest as these bacteria are responsible for fruit soft rot and use insects as dissemination vectors. The Erwinia carotovora carotovora strain 15 (Ecc15) is capable of persisting in the Drosophila gut by the sole action of one protein, Erwinia virulence factor (Evf). However, the precise function of Evf is elusive, and its sequence does not provide any indication as to its biochemical function. We have solved the 2.0-angstroms crystal structure of Evf and found a protein with a complex topology and a novel fold. The structure of Evf confirms that Evf is unlike any virulence factors known to date. Most remarkably, we identified palmitoic acid covalently bound to the totally conserved Cys209, which provides important clues as to the function of Evf. Mutation of the palmitoic binding cysteine leads to a loss of virulence, proving that palmitoylation is at the heart of Evf infectivity and may be a membrane anchoring signal. Fluorescence studies of the sole tryptophan residue (Trp94) demonstrated that Evf was indeed able to bind to model membranes containing negatively charged phospholipids and to promote their aggregation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae.

Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as a virulence factor that promotes colonization of the Drosophila larval gut and provokes the triggering of a systemic immune response. Here we have analysed how Evf promotes persistence and colonization of bacteria inside the larval gut. Erwinia evf mutants do not persist in immune-deficient Drosoph...

متن کامل

A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster.

Insects are major vectors of plant and animal disease, and bacterial phytopathogens are often disseminated by flies. We have previously reported that some isolates of the phytopathogenic bacterial species Erwinia carotovora infect Drosophila and activate an immune response. Using a genetic screen, we have now identified two genes that are required by E. carotovora to infect Drosophila. One of t...

متن کامل

RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC.

RsmC and FlhDC are global regulators controlling extracellular proteins/enzymes, rsmB RNA, motility, and virulence of Erwinia carotovora subsp. carotovora. FlhDC, the master regulator of flagellar genes, controls these traits by positively regulating gacA, fliA, and rsmC and negatively regulating hexA. RsmC, on the other hand, is a negative regulator of extracellular proteins/enzymes, motility,...

متن کامل

Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria.

Many bacterial species respond to the quorum-sensing signal autoinducer-2 (AI-2) by regulating different niche-specific genes. Here, we show that Sinorhizobium meliloti, a plant symbiont lacking the gene for the AI-2 synthase, while not capable of producing AI-2 can nonetheless respond to AI-2 produced by other species. We demonstrate that S. meliloti has a periplasmic binding protein that bind...

متن کامل

Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 6  شماره 

صفحات  -

تاریخ انتشار 2009